
Assignment 8 
1. Using Heun’s method, approximate y(1) with h = 0.2 and again with h = 0.1 for the initial-value problem 

defined by 
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f = @(t, y)(2*y + t - 1); 
h = 0.2; 
ts = 0:h:1; 
ys = zeros( 1, 6 ); 
ys(1) = 1.0; 
for k = 1:5 
    s0 = f( ts(k), ys(k) ); 
    s1 = f( ts(k) + h, ys(k) + h*s0 ); 
    ys(k + 1) = ys(k) + h*(s0 + s1)/2.0; 
end 
ys 
    ys = 
         1.0   1.26   1.6928   2.381344   3.44838912   5.0756158976 
 
h = 0.1; 
tss = 0:h:1; 
yss = zeros( 1, 11 ); 
yss(1) = 1.0; 
for k = 1:10 
    s0 = f( tss(k), yss(k) ); 
    s1 = f( tss(k) + h, yss(k) + h*s0 ); 
    yss(k + 1) = yss(k) + h*(s0 + s1)/2.0; 
end 
yss 
    yss = 1.0                 1.115               1.2663 
          1.461886            1.71150092          2.0270311224 
          2.422977969328      2.917033122580161   3.530780409547796 
          4.290552099648311   5.228473561570939 
 
  



2. In Question 1, you approximated y(0.2) with h = 0.2, and y(0.1) with h = 0.1. The correct solutions to 

sixteen significant digits are y(0.2) = 1.268868523230952 and y(0.1) = 1.116052068620128. Show that the 

error of one step of Heun’s method is O(h3) by showing that the error of your approximation at t = 0.1 is 

approximately one eighth the error at t = 0.2. You should consider doing one step by hand, and then multiple 

steps using a program. 

% Error of one step with h = 0.2 
abs( 1.268868523230952 - 1.26 ) 
        ans = 0.008868523230951997 
 
% Error of one step with h = 0.1 
abs( 1.116052068620128 - 1.115 ) 
        ans = 0.001052068620128077 
 
% Error of one step with h = 0.2 divided by eight 
abs( 1.268868523230952 - 1.26 )/8 
        ans = 0.001108565403869000 
 
As you can see, the error is indeed reduced by approximately a factor of eight. 

 
  



3. Using the 4th-order Runge-Kutta method, approximate y(1) with h = 0.2 and again with h = 0.1 for the 

initial-value problem defined by 
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h = 0.2; 
ts = 0:h:1; 
ys = zeros( 1, 6 ); 
ys(1) = 1.0; 
for k = 1:5 
    s0 = f( ts(k), ys(k) ); 
    s1 = f( ts(k) + 0.5*h, ys(k) + 0.5*h*s0 ); 
    s2 = f( ts(k) + 0.5*h, ys(k) + 0.5*h*s1 ); 
    s3 = f( ts(k) + h, ys(k) + h*s2 ); 
    ys(k + 1) = ys(k) + h*(s0 + 2*s1 + 2*s2 + s3)/6.0; 
end 
ys 
    ys = 1.000000000000000   1.268800000000000   1.718951253333334 
         2.439630216305778   3.563864381337206   5.290095293120089 
 
h = 0.1; 
tss = 0:h:1; 
yss = zeros( 1, 11 ); 
yss(1) = 1.0; 
for k = 1:10 
    s0 = f( tss(k), yss(k) ); 
    s1 = f( tss(k) + 0.5*h, yss(k) + 0.5*h*s0 ); 
    s2 = f( tss(k) + 0.5*h, yss(k) + 0.5*h*s1 ); 
    s3 = f( tss(k) + h, yss(k) + h*s2 ); 
    yss(k + 1) = yss(k) + h*(s0 + 2*s1 + 2*s2 + s3)/6.0; 
end 
yss 
   yss = 1.000000000000000   1.116050000000000   1.268863470000000 
         1.466579842258000   1.719140619333921   2.038688352454451 
         2.440053953687867   2.941351899034361   3.564707209480569 
         4.337143385659567   5.291666931244595  



4. In Question 1, you approximated y(0.2) with h = 0.2, and y(0.1) with h = 0.1. The correct solutions to 

sixteen significant digits are y(0.2) = 1.268868523230952 and y(0.1) = 1.116052068620128. Show that the 

error of one step of 4th-order Runge-Kutta method is O(h5) by showing that the error of your approximation 

at t = 0.1 is approximately one thirty-second the error at t = 0.2. You should consider doing one step by 

hand, and then multiple steps using a program. 

% Error of one step with h = 0.2 
abs( 1.268868523230952 - 1.2688 ) 
       ans = 0.00006852323095207780 
 
% Error of one step with h = 0.1 
abs( 1.116052068620128 - 1.11605 ) 
       ans = 0.000002068620128081733 
 
% Error of one step with h = 0.2 divided by 32 
abs( 1.268868523230952 - 1.2688 )/32.0 
       ans = 0.000002141350967252431 
 
  



5. When we do the error analysis on Euler’s method, are we using a convex combination of the errors, or a 

more general weighted average of the errors? Thus, may we say that the error is bounded above and below 

by the second derivative evaluated at some point on the interval, or may this not be the case? 

It is a convex combination of the errors. 

Therefore, if the second derivative is always positive, then the error will always be positive, for the 

approximation will always underestimate the next approximation. 

Similarly, if the second derivative is always negative, then the error will always be negative, for the 

approximation will always overestimate the next approximation. 

 

6. For argument’s sake, how small would h have to be so that the error is less than 0.01 using Euler’s method 

to find the approximation to the initial-value problem 
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to approximate the value of y(10). You can find h because you know the solution to this initial-value 

problem and you can calculate an upper bound for the solution’s second derivative on the interval [0, 10]. 

Taylor’s series is y(h) = y(0) + y(1)(0) + ½y(2)()h2 for one step, and the error for multiple steps is 

½(b – a)hy(2)() 

so for this problem, as y(1)(t) = –y(t) so y(2)(t) = –y(1)(t) and thus y(2)(t) = y(t), and this simplifies to 5hy() for 

some value of 0 ≤   ≤ 10. The solution to the IVP with this ODE and the initial condition y(0) = 0 is the 

constant zero function so a lower bound, and y(1)(0) = –1, so we may conclude that 0 ≤ y()  ≤ 1, so as an 

over-estimate, we want 5h = 0.01 or h = 0.002. 

  



7. Apply one step of our adaptive Euler-Heun to approximate a solution to the initial-value problem 
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starting with an h = 0.1 with the per unit time error eabs = 0.1. What value of h would you use with the next 

step, and would you be recalculating the previous step, or calculating the next step? 

f = @(t, y)(2*y + t - 1); 
t0 = 0; 
y0 = 1; 
eps_abs = 0.1; 
h = 0.1; 
s0 = f(t0,     y0); 
s1 = f(t0 + h, y0 + h*s0); 
y = y0 + h*s0 
        y = 1.1 
z = y0 + h*(s0 + s1)/2 
        z = 1.115 
a = (h*eps_abs)/(2*abs(y - z)) 
        a = 0.333333333333333 
h = 0.9*a*h 
        h = 0.03 
 
We would be required to recalculate but now with a value of h = 0.03, not h = 0.1; however, as a precaution, 

we do not divide h by more than a factor of two, so we should use h = 0.05. 

As an aside, it happens that h = 0.05 is still too large, and we find (again) that the optimal value of 

h should be h = 0.03, at which point, the value of a is 1.111111111, and t1 = 0.03 and y1 = 1.03135 

and so with our next step, we would again use h = 0.9ah = 0.03. 

 
8. Suppose you were applying the Dormand-Prince method and you started with h = 0.1 with a per unit 

time acceptable error of abs =  0.00001, and your two approximations of the next point were 

y = 1.1160522588 and z = 1.11605208. 

What would your value of a be in this case, and what step size would you use with the next step? Would 

you be recalculating this point with the same h value, or would you continue to approximate the next point? 

h = 0.1; 
eps_step = 0.00001; 
y = 1.1160522588; 
z = 1.11605208; 
a = ( (h*eps_step)/(2*abs(y - z)) )^0.25 
         a = 1.293155116610072 
h = 0.9*a*h 
         h = 0.116383960494907 
 
We would thus use the value z to approximate the solution at tk+1 ← tk + 0.1, so yk+1 ← z for the above value 

of z, and the step size with the next calculation would be the value of h found above. 



9. Incidentally, the approximations y and z are the approximations to the solution to the initial-value problem 

given in Question 7 approximating the solution at y(0.1). Given that the exact solution to sixteen significant 

digits is y(0.1) = 1.116052068620128, demonstrate that the error introduced is indeed less than habs. 

h = 0.1; 
eps_abs = 0.00001; 
h*eps_abs 
            ans = 0.000001 
abs( z - 1.116052068620128 ) 
            ans = 0.00000001137987193366996 
 
 


